<section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header>

La linea di comando di MATLAB è indicata dal prompt

Accetta dichiarazioni di variabili, espressioni e chiamate a tutte le funzioni disponibili nel programma.

Tutte le funzioni di MATLAB non sono altro che files di testo, simili a quelli che l'utente può generare con un text editor, e vengono eseguite semplicemente digitandone il nome sulla linea di comando.

MATLAB permette inoltre di richiamare le ultime righe di comandi inseriti usando le frecce in alto e in basso.

A. Murli – Introduzione a Matlab

HELP DI MATLAB

MATLAB presenta un *help* in linea con informazioni sulla sintassi di tutte le funzioni disponibili.

Per accedere a queste informazioni, basta digitare:

help nome_funzione È anche possibile avere un *help* di tutte le funzioni di una certa categoria; ad esempio per sapere quali sono le funzioni specifiche per l'analisi dei segnali, basta digitare:

help signal

Per sapere quali sono le varie categorie di funzioni disponibili (i *toolbox*), basta digitare:

help

>>

A. Murli – Introduzione a Matlab

I FILES DI MATLAB

I files interpretati dal programma sono file di testo ASCII con estensione **,m**; sono generati con un text editor e sono eseguiti in MATLAB semplicemente digitandone il nome sulla linea di comando (senza estensione!).

È possibile inserire dei commenti al loro interno precedendo ogni linea di commento col percento **%**

A. Murli – Introduzione a Matlab

PUNTEGGIATURA E VARIABILI Le istruzioni (siano esse contenute in un file .m lanciato da MATLAB, oppure digitate direttamente dalla linea di comando) vanno sempre terminate con un punto e virgola, altrimenti è visualizzato il risultato dell'applicazione dell'istruzione. >> var2=linspace(-10,10,10000); >> var1=6 var1

6

A. Murli – Introduzione a Matlab

ELEMENTI DI BASE DI MATLAB

L'inserimento di un vettore o di una matrice in generale viene effettuato tra parentesi quadre, separando gli elementi delle righe con spazi o virgole, e le diverse righe con punti e virgola (oppure andando a capo ad ogni nuova riga).

A. Murli – Introduzione a Matlab

Altre funzioni operanti su <i>matrici</i> (e, quindi, su <i>vettori</i> , riga o colonna) sono:
max, min,
sort,
sum, prod,
Esistono poi particolari operatori (.*, ./, .^) che permettono di effettuare operazioni su vettori <i>elemento per elemento</i> , senza ricorrere a cicli. Ad esempio, se A e B sono due matrici, per sommare elemento per elemento le due matrici basta fare: >> C=A.+B;
A. Murli – Introduzione a Matlab

 Altre funzioni che operano matrici sono: 	invece essenzialmente su
det 🔸	Determinante della matrice
<pre>>> det(A)</pre>	Dimensioni della matrice Rango della matrice
	A. Murli – Introduzione a Matlab

TRACCIAMENTO DI PIU' GRAFICI NELLA STESSA FINESTRA

Il comando *subplot(m, n, p)* divide la finestra corrente in m righe, n colonne e seleziona la finestra p-esima,

ad esempio

subplot(2,2,3)

spezza la finestra in quattro sottofinestre e seleziona quella in basso a sinistra (riga 2, colonna 1)

il comando *subplot(m,n,p)* deve essere, dunque, usato prima del *plot*, per fornire informazioni sulla sottofinestra in cui visualizzare il grafico desiderato

A. Murli – I grafici in Matlab

OPERAZIONI MATRICIALI

Scrivere un file .m contenente le istruzioni relative alla risoluzione dei seguenti quesiti: 1. Risolvere il seguente sistema lineare, ponendo $\mathbf{x}=\mathbf{A}^{-1}\mathbf{b}$, con A matrice dei coefficienti e b vettore dei termini noti: $2x_1 - 4x_2 + 7x_3 + 4x_4 = 5$ $9x_1 + 3x_2 + 2x_3 - 7x_4 = -1$ $5x_1 + 2x_2 - 3x_3 + x_4 = -3$ $6x_1 - 5x_2 + 4x_3 - 3x_4 = 2$ 2. calcolare il prodotto scalare $s=\mathbf{u}*\mathbf{v}^{\mathrm{T}}$, della seguente coppia di punti: u = (5,3,-2,-4,-1) v = (2,-1,0,-7,2)

3. Data la matrice $A = \begin{pmatrix} 2 \\ - \\ - \end{pmatrix}$	$5 3 - 6 \\ 7 2 0 \\ -4 8 1 \end{pmatrix}$ calcolare:	
A1=A*A;	e=exp(A);	
A2=A'*A;	<pre>sq=sqrt(A);</pre>	
A3=A.*A;	<pre>el=exp(log(A+7));</pre>	
d1=diag(A);	m=max(A);	
<pre>d2=diag(A,1);</pre>	<pre>sn=sign(A);</pre>	

TRACCIAMENTO DI PIU' GRAFICI NELLA STESSA FINESTRA

✓ cancellare le due finestre dell'esercizio precedente;

✓ utilizzando il comando subplot(m,n,p) spezzare la finestra corrente in quattro sottofinestre e graficare in esse quattro funzioni a scelta, in opportuni intervalli di variabilità.

A. Murli – I grafici in Matlab