Esercitazioni di Elettrotecnica

a cura dell'Ing. Antonio Maffucci

Parte II:

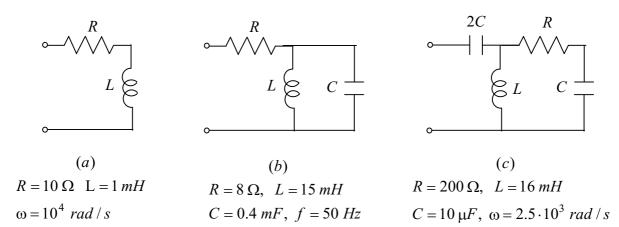
Circuiti in regime sinusoidale

ESERCITAZIONE N.7: Fasori ed impedenze

ESERCIZIO 7.1

Esprimere la corrente i(t) in termini di fasore nei seguenti tre casi:

a)
$$i(t) = 4\cos(\omega t - 1.14)$$


b)
$$i(t) = 10\cos(\omega t - \pi)$$

a)
$$i(t) = 4\cos(\omega t - 1.14)$$
 b) $i(t) = 10\cos(\omega t - \pi)$ c) $i(t) = 8\cos(\omega t + \pi/2)$

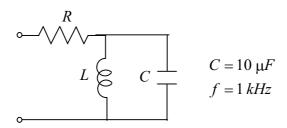
Risultato: a)
$$\bar{I} = 4 \exp(-j1.14)$$
; b) $\bar{I} = -10$; c) $\bar{I} = 8j$.

ESERCIZIO 7.2

Valutare (in coordinate cartesiane e polari) le impedenze viste ai capi dei morsetti indicati col pallino:

Risultato: a)
$$\dot{Z} = 10 + 10j = 10\sqrt{2} \exp(j\pi/4) \Omega$$
;
b) $\dot{Z} = 8 + 11.54j = 14 \exp(j0.965) \Omega$;
c) $\dot{Z} = 8 + 20j = 21.5 \exp(j1.19) \Omega$;

ESERCIZIO 7.3


Le seguenti coppie di fasori esprimono tensione e corrente relative ad un dato bipolo. Dire, nei tre casi, se si tratta di un resistore, un condensatore o un induttore e valutare il valore di R, C o L

a)
$$v(t) = 15\cos(400t + 1.2)$$
, $i(t) = 3\sin(400t + 1.2)$;
b) $v(t) = 8\cos(900t - \pi/3)$, $i(t) = 2\sin(900t + 2\pi/3)$;
c) $v(t) = 20\cos(250t + \pi/3)$, $i(t) = 5\sin(250t + 5\pi/6)$;

Risultato: a) L = 12.5 mH; b) C = 0.28 mF; c) $R = 4 \Omega$.

ESERCIZIO 7.4

Si consideri il circuito in figura, determinando L tale che la parte immaginaria dell'impedenza vista ai capi dei morsetti indicati col pallino risulti $\operatorname{Im}\{\dot{Z}\}=100\,\Omega$.

Risultato: L = 2.19 mH.

ESERCIZIO 7.5

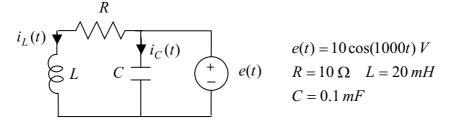
A quale di queste impedenze corrisponde la fase $\varphi = -\pi/4$?

1: R-L serie	2: R-C serie	3: R-C parallelo	4: L-C serie
$R = 10 \Omega$	$R = 10 \Omega$	$R = 0.5 \Omega$	C = 1 F
L = 10 mH	C = 10 mF	C = 0.2 F	L=1 H
$\omega = 100 \ rad / s$	$\omega = 100 rad / s$	$\omega = 10 rad / s$	$\omega = 1 rad / s$

Risultato: Caso 3 ($\dot{Z} = 0.25(1 - j) \implies \varphi = -\pi/4$).

ESERCIZIO 7.6

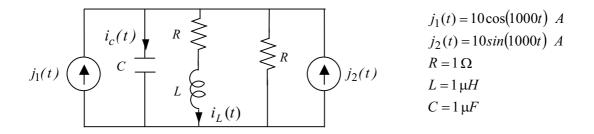
Dati i seguenti fasori $\overline{V_1} = 10 \exp(j\pi/6)$, $\overline{V_2} = 10 \exp(-j\pi/6)$, $\overline{V_3} = 5 \exp(-j\pi/3)$:


- a) rappresentare nel piano complesso i fasori $\overline{V}_1,\overline{V}_2,\overline{V}_3$;
- b) calcolare i fasori: $\overline{V_1} + \overline{V_2}$, $\overline{V_1} \overline{V_2}$, $\overline{V_1} + \overline{V_3}$, $\overline{V_1} \overline{V_3}$;
- c) rappresentare nel piano complesso i fasori valutati al punto b)
- d) rappresentare nel tempo le tensioni corrispondenti ai fasori dei punti a) e b), avendo definito la trasformazione fasoriale come segue: $v(t) = V \cos(\omega t + \alpha) \leftrightarrow \overline{V} = V \exp(j\alpha)$

ESERCITAZIONE N.8: Analisi di reti in regime sinusoidale

ESERCIZIO 8.1

Con riferimento al seguente circuito, valutare:


- a) l'impedenza \dot{Z}_{eq} vista ai capi del generatore;
- b) le correnti $i_L(t)$ e $i_C(t)$

Risultato: a) $\dot{Z}_{eq} = 5 - j15 \Omega$; b) $i_L(t) = 0.45 \cos(1000t - 1.11) A$, $i_C(t) = -\sin(1000t) A$.

ESERCIZIO 8.2

Con riferimento al seguente circuito valutare le correnti $i_L(t)$ ed $i_C(t)$.

Risultato: $i_L(t) = 7.07\cos(1000t - \pi/4) A$; $i_C(t) = 7.07\cos(1000t + \pi/4) mA$.

ESERCIZIO 8.3

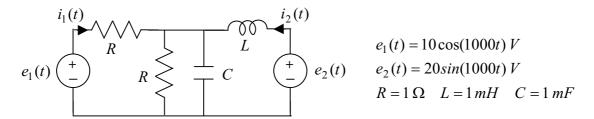
Con riferimento al seguente circuito, valutare:

- a) l'impedenza \dot{Z}_{eq} vista ai capi del generatore;
- b) la potenza complessa \dot{S} erogata dal generatore;

$$j(t) = 10\cos(2t) A$$

$$R = 2 \Omega$$

$$L = 1 H$$


$$C = 0.25 F$$

Risultato: a) $\dot{Z}_{eq} = 0.8 + j0.4 \,\Omega$; b) $\dot{S} = 40 + j20$.

ESERCIZIO 8.4

Con riferimento al seguente circuito, valutare:

- a) la matrice delle ammettenze \dot{Y} del doppio-bipolo visto ai capi dei generatori;
- b) la potenza complessa \dot{S} erogata dai generatori;

Risultato:

a)
$$\dot{Y}_{11} = 0.5 \,\Omega^{-1}$$
, $\dot{Y}_m = 0.5 j \,\Omega^{-1}$, $\dot{Y}_{22} = 0.5 - j \,\Omega^{-1}$;
b) $\dot{S}_1^{er} = 75 \,W$, $\dot{S}_2^{er} = 50 \,W + j200 \,VAr$.

ESERCIZIO 8.5

Con riferimento al seguente circuito valutare

- a) la potenza complessa erogata dal generatore;
- b) la reattanza da inserire in parallelo al generatore in modo che l'impedenza complessiva vista dal generatore stesso assorba la stessa potenza media di prima ma abbia un fase φ tale che $\cos \varphi = 0.9$ (*rifasamento*).

$$e(t) \stackrel{L}{\longleftarrow} C \stackrel{e(t) = sin(\omega t) V}{\longleftarrow} C \stackrel{e(t) = sin(\omega t) V}{\longleftarrow} C \stackrel{\omega = 10^4 \ rad \ /s, \quad R = 1 \Omega}{\longleftarrow} C = 0.1 \ mF, \quad L = 0.5 \ mH$$

Risultato: a) $\dot{S} = 12.2 \text{ mW} + j0.11 \text{ VAr}$; b) occorre un condensatore // ad e(t) avente $C = 3.2 \, \mu F$.

ESERCIZIO 8.6

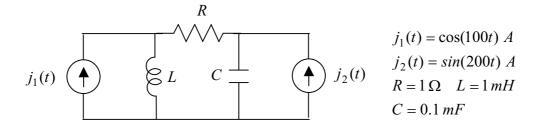
Calcolare la potenza attiva P_2 e la potenza reattiva Q_2 assorbita dalla serie $R_2 - L_2$.

$$j_{1}(t) = 4\cos(4t) A$$

$$j_{2}(t) = 2\cos(4t - 2\pi/3) A$$

$$R_{1} = R_{2} = 2 \Omega$$

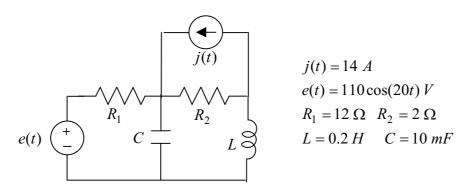
$$L_{1} = L_{2} = 1 H$$


$$C = 2 F$$

Risultato: $P_2 = 3.06 \ W$, $Q_2 = 6.12 \ VAr$.

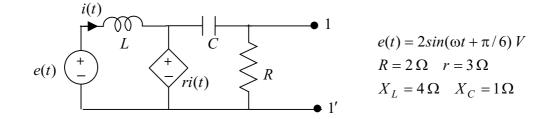
ESERCITAZIONE N.9: Analisi di reti in regime sinusoidale/2

ESERCIZIO 9.1


Con riferimento al seguente circuito, valutare la potenza media P assorbita dal resistore R e verificare che è possibile sovrapporre le potenze medie.

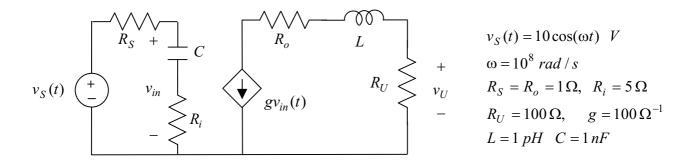
Risultato: $P \approx 0.5 W$.

ESERCIZIO 9.2


Con riferimento al seguente circuito, valutare la potenza media P assorbita dal resistore R_2 e verificare che è possibile sovrapporre le potenze medie.

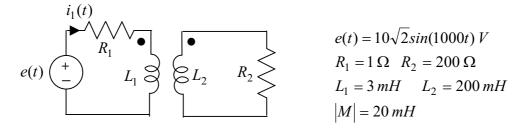
Risultato: $P = 0.41 \, kW$.

ESERCIZIO 9.3


Valutare l'equivalente di Thévenin ai capi dei morsetti 1-1'.

Risultato: $\overline{V}_0 = 1.07 e^{j0.06} \ V$, $\dot{Z}_{eq} = 0.4 (1-2j) \ \Omega$.

ESERCIZIO 9.4


Il circuito seguente riproduce lo schema equivalente di un amplificatore a transistor per alta frequenza. Determinare la tensione ai capi del resistore di carico

Risultato: $v_U(t) = 95.9\cos(\omega t + 3.06) kV$.

ESERCIZIO 9.5

Con riferimento al seguente circuito valutare la corrente $i_1(t)$ nel circuito primario.

Risultato: $i_1(t) = 5sin(1000t - \pi/4) A$.

ESERCIZIO 9.6

Con riferimento al seguente circuito valutare la potenza complessa \dot{S} assorbita dal condensatore.

$$j(t) = 10\sqrt{2}\cos(100t) A$$

$$R_1 = R_2 = 5 \Omega$$

$$L_1 = 1 mH, \quad L_2 = 4 mH$$

$$|M| = 2 mH, \quad C = 12.5 mF$$

Risultato: $\dot{S} = -j5 \ VAr$.